w^2+11=9w^2-8

Simple and best practice solution for w^2+11=9w^2-8 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for w^2+11=9w^2-8 equation:



w^2+11=9w^2-8
We move all terms to the left:
w^2+11-(9w^2-8)=0
We get rid of parentheses
w^2-9w^2+8+11=0
We add all the numbers together, and all the variables
-8w^2+19=0
a = -8; b = 0; c = +19;
Δ = b2-4ac
Δ = 02-4·(-8)·19
Δ = 608
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$w_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$w_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{608}=\sqrt{16*38}=\sqrt{16}*\sqrt{38}=4\sqrt{38}$
$w_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-4\sqrt{38}}{2*-8}=\frac{0-4\sqrt{38}}{-16} =-\frac{4\sqrt{38}}{-16} =-\frac{\sqrt{38}}{-4} $
$w_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+4\sqrt{38}}{2*-8}=\frac{0+4\sqrt{38}}{-16} =\frac{4\sqrt{38}}{-16} =\frac{\sqrt{38}}{-4} $

See similar equations:

| |a-1|=2 | | -9q-10=3-9q | | 6y=-22 | | x-3/x+2=2/7 | | (6x+9)=(8x-7) | | -4(3u-3)+8u=6(u+3) | | -9y=-8y-8 | | 8p+6=6p | | 8y+7=y | | 6y=2+6y | | 3-4x=4x+7 | | t=5-4t | | (x)=((x)^(2)-9x+14)/((x)^2-11x+24) | | 5q=-79 | | 4-5d=-6d | | 2s+4=-(1-2s)+5 | | 9-10r=-10r+9 | | (46-15)/(3+28)=a | | -q-8=2q-4q+2 | | -15-2x=-4x+13 | | -6x-14=28-4x | | 6p-7p=-p | | (x+4)/2+(x+1)/3=10 | | 41+2d=2-d | | 9y-5-7y+2=0 | | -25-5x=-3x+7 | | x=(x-2)/(x+11x+24) | | .5x=0.67 | | (x+13/2)*(x-13/2)=0 | | -13-8x=14-5x | | D=c÷π | | 6x-65=26-x |

Equations solver categories